The Mathematical Space Build formula
A. FORMULA BUILDING FLAT
a. Square
Build square has 4 rotating symmetries and 4 fold symmetries.
Formula :
· Roving: 4 x s
· Area: s x s (s2)
S = side
b. Rectangle
Build a rectangle has 2 rotating symmetries and 2 fold symmetries.
Formula :
· Roving: 2 x (p + l)
· Area: p x l
P = length
L = width
c. Triangle
1. An isosceles triangle
Build an isosceles triangle has 1 swivel symmetry and 1 fold symmetry.
2. Equilateral triangle
the equilateral triangle has 3 swivel symmetries and 3 fold symmetries.
3. Right triangle
Build a right triangle has no folding symmetry and has 1 rotating symmetry.
4. Any triangle
an arbitrary triangle build has no folding symmetry and has 1 rotating symmetry.
Formula :
· Roving: AB + BC + AC
· Area: ½ x a x t
a = base
t = high
d. Parallelogram
Bangun jajargenjang has 2 rotating symmetries and does not have rotary symmetry.
Formula :
· Roving: AB + BC + CD + AD
· Area: a x t
a = base
t = high
e. Trapezoid
1. Any trapezoid
Any trapezoidal build has 1 swivel symmetry and no folding symmetry.
2. Trapezoid with legs
isosceles trapezoidal has 1 swivel symmetry and 1 fold symmetry.
3. Right-angled trapezoid
Build a right trapezoid has 1 swivel symmetry and has no folding symmetry.
Formula :
· Roving: AB + BC + CD + DA
· Area: ½ x number of sides parallel to x height
f. Kite
Kite building has 1 rotary symmetry and 1 folding symmetry
Formula:
· Roving: 2 (AB + BC)
· Area: ½ x d1 x d2
d = diagonal
g. Cut the rice cake
Rhombus wake has 2 fold symmetries and 2 rotating symmetries.
Formula :
· Roving: 4 x s
· Area: ½ x d1 x d2
d = diagonal
B. FORM OF SPACE BUILDING
a. Cube
Formula:
· Surface area: 6 x s2 = 6s2
· Volume: s x s x s = s3
b. Beam
Formula:
· Surface area: 2 {(p x l) + (p x t) + (l x t)}
· Volume: p x l x t
c. Pyramid
Formula:
· Surface area: LA + the total area of the triangle in the upright plane
· Volume: 1/3 x La x t
La = base area
t = high
d. Prism
Formula:
· Surface area: (2 x La) + (K x t)
· Volume: La x t
La = base area
k = pedestal base
t = high
e. Tube
Formula:
· Surface area: 2 π r (r + t)
· Blanket area: 2 π r t
· Volume: 2 r2 t
π = 22/7 atu 3.14
r = base radius
t = tube height
f. Cone
Formula:
· Surface area: π r (r + s)
· Blanket area: .r s
· Volume: 1/3 2 r2 t
r = radius of the circle base
s = length of the cone painter line
t = cone height
g. Ball
Formula :
· Surface area: 4 2 r2
· Volume: 4/3 3 r3
r = ball radius
B. FORMULA BUILDING ROOM AND
THE PICTURE
1FORMULAR BUILDING CUBE ROOM
The cube has 6 (six) rectangular sides with the same width between the sides.
There are 12 (twelve) ribs with the same length of ribs.
All angles are worth 90 degrees or right.
Formula:
Area of one side = ribs x ribs
Area of Cube Surface = 6 x ribs x ribs
Roving Cube = 12 x ribs
Volume of Cube = ribs x ribs x ribs (ribs 3)
2. FORMULATE BUILDING ROOMS
Formula:
Beam Surface Area = 2 x {(pxl) + (pxt) + (lxt)}
Diagonal Space = Root of (p squared + l squared + t squared)
around Beams = 4 x (p + l + t)
Beam Volume = p x l x t (same as cube, but all cube ribs are equal in length).
3. FORMULATING THE BUILDING SPACE
Formula:
Area of Ball = 4 x π x radius x radius, or
4 x π x r2
Ball Volume = 4/3 x π x radius x radius x radius
π = 3.14 or 22/7
4. FORM BUILDING / CYLINDER ROOMS
Formula:
Volume = area of base x height, or
area of circle x t
Area = base area + number of sides
Area = base area + cap area + blanket area, or
(2 x π x r x r) + π x d x t)
5FORMULAR BUILDING CONE ROOM
Formula:
Volume = 1/3 x π x r x r x t
Spacious = wide bed + wide blanket
6. FORMULATING THE BUILDING OF THE LIMAS SPACE
Formula:
Volume = 1/3 the height of the base side
Area = base area + number of upright sides
Hopefully useful 👍😊👍😊
a. Square
Build square has 4 rotating symmetries and 4 fold symmetries.
Formula :
· Roving: 4 x s
· Area: s x s (s2)
S = side
b. Rectangle
Build a rectangle has 2 rotating symmetries and 2 fold symmetries.
Formula :
· Roving: 2 x (p + l)
· Area: p x l
P = length
L = width
c. Triangle
1. An isosceles triangle
Build an isosceles triangle has 1 swivel symmetry and 1 fold symmetry.
2. Equilateral triangle
the equilateral triangle has 3 swivel symmetries and 3 fold symmetries.
3. Right triangle
Build a right triangle has no folding symmetry and has 1 rotating symmetry.
4. Any triangle
an arbitrary triangle build has no folding symmetry and has 1 rotating symmetry.
Formula :
· Roving: AB + BC + AC
· Area: ½ x a x t
a = base
t = high
d. Parallelogram
Bangun jajargenjang has 2 rotating symmetries and does not have rotary symmetry.
Formula :
· Roving: AB + BC + CD + AD
· Area: a x t
a = base
t = high
e. Trapezoid
1. Any trapezoid
Any trapezoidal build has 1 swivel symmetry and no folding symmetry.
2. Trapezoid with legs
isosceles trapezoidal has 1 swivel symmetry and 1 fold symmetry.
3. Right-angled trapezoid
Build a right trapezoid has 1 swivel symmetry and has no folding symmetry.
Formula :
· Roving: AB + BC + CD + DA
· Area: ½ x number of sides parallel to x height
f. Kite
Kite building has 1 rotary symmetry and 1 folding symmetry
Formula:
· Roving: 2 (AB + BC)
· Area: ½ x d1 x d2
d = diagonal
g. Cut the rice cake
Rhombus wake has 2 fold symmetries and 2 rotating symmetries.
Formula :
· Roving: 4 x s
· Area: ½ x d1 x d2
d = diagonal
B. FORM OF SPACE BUILDING
a. Cube
Formula:
· Surface area: 6 x s2 = 6s2
· Volume: s x s x s = s3
b. Beam
Formula:
· Surface area: 2 {(p x l) + (p x t) + (l x t)}
· Volume: p x l x t
c. Pyramid
Formula:
· Surface area: LA + the total area of the triangle in the upright plane
· Volume: 1/3 x La x t
La = base area
t = high
d. Prism
Formula:
· Surface area: (2 x La) + (K x t)
· Volume: La x t
La = base area
k = pedestal base
t = high
e. Tube
Formula:
· Surface area: 2 π r (r + t)
· Blanket area: 2 π r t
· Volume: 2 r2 t
π = 22/7 atu 3.14
r = base radius
t = tube height
f. Cone
Formula:
· Surface area: π r (r + s)
· Blanket area: .r s
· Volume: 1/3 2 r2 t
r = radius of the circle base
s = length of the cone painter line
t = cone height
g. Ball
Formula :
· Surface area: 4 2 r2
· Volume: 4/3 3 r3
r = ball radius
B. FORMULA BUILDING ROOM AND
THE PICTURE
1FORMULAR BUILDING CUBE ROOM
The cube has 6 (six) rectangular sides with the same width between the sides.
There are 12 (twelve) ribs with the same length of ribs.
All angles are worth 90 degrees or right.
Formula:
Area of one side = ribs x ribs
Area of Cube Surface = 6 x ribs x ribs
Roving Cube = 12 x ribs
Volume of Cube = ribs x ribs x ribs (ribs 3)
2. FORMULATE BUILDING ROOMS
Formula:
Beam Surface Area = 2 x {(pxl) + (pxt) + (lxt)}
Diagonal Space = Root of (p squared + l squared + t squared)
around Beams = 4 x (p + l + t)
Beam Volume = p x l x t (same as cube, but all cube ribs are equal in length).
3. FORMULATING THE BUILDING SPACE
Formula:
Area of Ball = 4 x π x radius x radius, or
4 x π x r2
Ball Volume = 4/3 x π x radius x radius x radius
π = 3.14 or 22/7
4. FORM BUILDING / CYLINDER ROOMS
Formula:
Volume = area of base x height, or
area of circle x t
Area = base area + number of sides
Area = base area + cap area + blanket area, or
(2 x π x r x r) + π x d x t)
5FORMULAR BUILDING CONE ROOM
Formula:
Volume = 1/3 x π x r x r x t
Spacious = wide bed + wide blanket
6. FORMULATING THE BUILDING OF THE LIMAS SPACE
Formula:
Volume = 1/3 the height of the base side
Area = base area + number of upright sides
Hopefully useful 👍😊👍😊
++++++++++++±++++++++++++++++++++++
A. RUMUS BANGUN DATAR
a. Persegi
Bangun persegi memiliki 4 buah simetri putar dan 4 buah simetri lipat.
Rumus :
· Keliling : 4 x s
· Luas : s x s (s2)
S = sisi
· Keliling : 4 x s
· Luas : s x s (s2)
S = sisi
b. Persegi panjang
Bangun persegi panjang memiliki 2 buah simetri putar dan 2 buah simetri lipat.
Rumus :
· Keliling : 2 x (p+l)
· Luas : p x l
P= panjang
L= lebar
c. Segitiga
· Keliling : 2 x (p+l)
· Luas : p x l
P= panjang
L= lebar
c. Segitiga
1. Segitiga sama kaki
Bangun segitiga sama kaki memiliki 1 buah simetri putar dan 1 buah simetri lipat.
2. Segitiga sama sisi
Bangun segitiga sama sisi memiliki 3 buah simetri putar dan 3 buah simetri lipat.
3. Segitiga siku-siku
Bangun segitiga siku-siku tidak memiliki simetri lipat dan memiliki 1 buah simetri putar.
4. Segitiga sembarang
Bangun segitiga sembarang tidak memiliki simetri lipat dan memiliki 1 buah simetri putar.
Bangun segitiga sama kaki memiliki 1 buah simetri putar dan 1 buah simetri lipat.
2. Segitiga sama sisi
Bangun segitiga sama sisi memiliki 3 buah simetri putar dan 3 buah simetri lipat.
3. Segitiga siku-siku
Bangun segitiga siku-siku tidak memiliki simetri lipat dan memiliki 1 buah simetri putar.
4. Segitiga sembarang
Bangun segitiga sembarang tidak memiliki simetri lipat dan memiliki 1 buah simetri putar.
Rumus :
· Keliling : AB+BC+AC
· Luas : ½ x a x t
a = alas
t= tinggi
· Keliling : AB+BC+AC
· Luas : ½ x a x t
a = alas
t= tinggi
d. Jajargenjang
Bangun jajargenjang memiliki 2 buah simetri putar dan tidak memiliki simetri putar.
Rumus :
· Keliling: AB+BC+CD+AD
· Luas: a x t
a=alas
t=tinggi
e. Trapesium
· Keliling: AB+BC+CD+AD
· Luas: a x t
a=alas
t=tinggi
e. Trapesium
1. Trapesium sembarang
Bangun trapesium sembarang memiliki 1 buah simetri putar dan tidak memiliki simetri lipat.
2. Trapesium sama kaki
Bangun trapesium sama kaki memiliki 1 buah simetri putar dan 1 buah simetri lipat.
3. Trapesium siku-siku
Bangun trapesium siku-siku memiliki 1 buah simetri putar dan tidak memiliki simetri lipat.
Bangun trapesium sembarang memiliki 1 buah simetri putar dan tidak memiliki simetri lipat.
2. Trapesium sama kaki
Bangun trapesium sama kaki memiliki 1 buah simetri putar dan 1 buah simetri lipat.
3. Trapesium siku-siku
Bangun trapesium siku-siku memiliki 1 buah simetri putar dan tidak memiliki simetri lipat.
Rumus :
· Keliling : AB+BC+CD+DA
· Luas: ½ x jumlah sisi sejajar x tinggi
· Keliling : AB+BC+CD+DA
· Luas: ½ x jumlah sisi sejajar x tinggi
f. Layang-layang
Bangun layang-layang memiliki 1 simetri putar dan 1 simetri lipat
Rumus:
· Keliling: 2(AB+BC)
· Luas: ½ x d1 x d2
d = diagonal
Rumus:
· Keliling: 2(AB+BC)
· Luas: ½ x d1 x d2
d = diagonal
g. Belah ketupat
Bangun belah ketupat memiliki 2 buah simetri lipat dan 2 buah simetri putar.
Rumus :
· Keliling : 4 x s
· Luas: ½ x d1 x d2
d = diagonal
· Keliling : 4 x s
· Luas: ½ x d1 x d2
d = diagonal
B. RUMUS BANGUN RUANG
a. Kubus
Rumus:
· Luas permukaan: 6 x s2 =6s2
· Volume: s x s x s= s3
· Luas permukaan: 6 x s2 =6s2
· Volume: s x s x s= s3
b. Balok
Rumus:
· Luas permukaan: 2{(p x l)+(p x t)+(l x t)}
· Volume: p x l x t
c. Limas
· Luas permukaan: 2{(p x l)+(p x t)+(l x t)}
· Volume: p x l x t
c. Limas
Rumus:
· Luas permukaan: La + jumlah luas segitiga pada bidang tegak
· Volume : 1/3 x La x t
La=luas alas
t= tinggi
d. Prisma
· Luas permukaan: La + jumlah luas segitiga pada bidang tegak
· Volume : 1/3 x La x t
La=luas alas
t= tinggi
d. Prisma
Rumus:
· Luas permukaan : (2 x La)+(K x t)
· Volume: La x t
La= luas alas
K= keliling alas
t= tinggi
e. Tabung
Rumus:
· Luas permukaan: 2 π r (r+t)
· Luas selimut: 2 π r t
· Volume : π r2 t
π= 22/7 atu 3,14
r= jari-jari alas
t= tinggi tabung
f. Kerucut
· Luas permukaan : (2 x La)+(K x t)
· Volume: La x t
La= luas alas
K= keliling alas
t= tinggi
e. Tabung
Rumus:
· Luas permukaan: 2 π r (r+t)
· Luas selimut: 2 π r t
· Volume : π r2 t
π= 22/7 atu 3,14
r= jari-jari alas
t= tinggi tabung
f. Kerucut
Rumus:
· Luas permukaan: π r (r+s)
· Luas selimut: π r s
· Volume: 1/3 π r2 t
r= jari-jari lingkaran alas
s= panjang garis pelukis kerucut
t= tinggi kerucut
g. Bola
· Luas permukaan: π r (r+s)
· Luas selimut: π r s
· Volume: 1/3 π r2 t
r= jari-jari lingkaran alas
s= panjang garis pelukis kerucut
t= tinggi kerucut
g. Bola
Rumus :
· Luas permukaan: 4 π r2
· Volume: 4/3 π r3
r= jari-jari bola
· Luas permukaan: 4 π r2
· Volume: 4/3 π r3
r= jari-jari bola
B. RUMUS BANGUN RUANG BESERTA
GAMBARNYA
GAMBARNYA
1. RUMUS BANGUN RUANG KUBUS
Kubus terdapat 6 (enam) buah sisi yang berbentuk persegi dengan luas yang sama besar diantara sisinya.
Terdapat 12 (dua belas) rusuk dengan panjang rusuk yang sama panjang.
Semua sudut bernilai 90 derajat ataupun siku-siku.
Terdapat 12 (dua belas) rusuk dengan panjang rusuk yang sama panjang.
Semua sudut bernilai 90 derajat ataupun siku-siku.
Rumus:
Luas salah satu sisi = rusuk x rusuk
Luas Permukaan Kubus = 6 x rusuk x rusuk
Keliling Kubus = 12 x rusuk
Volume Kubus = rusuk x rusuk x rusuk ( rusuk 3 )
Luas Permukaan Kubus = 6 x rusuk x rusuk
Keliling Kubus = 12 x rusuk
Volume Kubus = rusuk x rusuk x rusuk ( rusuk 3 )
2. RUMUS BANGUN RUANG BALOK
Rumus:
Luas Permukaan Balok = 2 x {(pxl) + (pxt) + (lxt)}
Diagonal Ruang = Akar dari (p kuadrat + l kuadrat + t kuadrat)
Keliling Balok = 4 x (p + l + t)
Volume Balok = p x l x t (sama dengan kubus, tapi semua rusuk kubus sama panjang).
Diagonal Ruang = Akar dari (p kuadrat + l kuadrat + t kuadrat)
Keliling Balok = 4 x (p + l + t)
Volume Balok = p x l x t (sama dengan kubus, tapi semua rusuk kubus sama panjang).
3. RUMUS BANGUN RUANG BOLA
Rumus:
Luas Bola = 4 x π x jari-jari x jari-jari, atau
4 x π x r2
Volume Bola = 4/3 x π x jari-jari x jari-jari x jari-jari
π = 3,14 atau 22/7
4 x π x r2
Volume Bola = 4/3 x π x jari-jari x jari-jari x jari-jari
π = 3,14 atau 22/7
4. RUMUS BANGUN RUANG TABUNG/SILINDER
Rumus:
Volume = luas alas x tinggi, atau
luas lingkaran x t
Luas = luas alas + jumlah sisitegak
luas lingkaran x t
Luas = luas alas + jumlah sisitegak
Luas = luas alas + luas tutup + luas selimut, atau
( 2 x π x r x r) + π x d x t)
5. RUMUS BANGUN RUANG KERUCUT
Rumus:
Volume = 1/3 x π x r x r x t
Luas = luas alas + luas selimut
6. RUMUS BANGUN RUANG LIMAS
Rumus:
Volume = 1/3 luas alas tinggi sisi
Luas = luas alas + jumlah luas sisi tegak
Semoga bermanfaat 👍😊👍😊
Comments
Post a Comment